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Background: Alzheimer’s disease (AD) is a widespread neurodegenerative disease that mostly affects 
the elderly population. Given its prevalence, a precise and efficient stratification system based on AD 
symptomology that uses functional magnetic resonance imaging (MRI) has great potential in the clinical 
diagnosis and prognosis estimation of AD patients. It was evident that deep learning methods have performed 
extremely well in the field of automated stratification of AD based on MRI because of their high predicting 
accuracy and reliability.
Methods: We proposed a deep convolutional neural network (CNN) and iterated random forest (RF) 
architecture for MRI image stratification by both anatomical location and image modality using the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We employed 3 cross-sectional data sets from 
the ADNI to conduct our binary-stratification [AD and normal controls (NCs), or AD and mild cognitive 
impairment (MCI)], and multi-stratification (AD, MCI, and NCs) process using MRI. And the accuracy, 
recall, specificity, area under the curve of receiver operating characteristic curve (AUC), F1 and Matthew’s 
correlation coefficient (MCC) scores to assess accuracy of auxiliary clinical diagnoses.
Results: Compared to other combinations of algorithms, our model obtained remarkable overall 
stratification accuracies in all different classification sets. In terms of AD vs. MCI, the mean training AUC of 
the 3 runs were 85.1% in 95% confidence intervals (CIs). In terms of AD vs. NC, the mean training AUC of 
the 3 runs was 90.6% in 95% CIs. In terms of the 3 stratifications of AD, MCI, and NC, relative precision, 
recall, and specificity for each category in the training test (TS) were all near 89%, while the F1 and MCC 
scores of both sets were 59.9% and 59.5%, respectively.
Conclusions: Using a deep CNN and iterated RF architecture, we showed that brain image stratification 
is a promising means for evaluating AD, and examining the underlying etiology of the disease, by applying 
computer and medical images to achieve the early auxiliary diagnosis of AD. However, we still have a long 
way to go from the discovery of image markers to clinical application.
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Introduction

Alzheimer’s disease (AD) is a primary cause of dementia. In 
recent years, many studies have employed neuroimaging 
bio-indicators to stratify AD patients or estimate disease 
progression (1). In the initial stages of the disease, AD 
produces learning and memory impairment in the 
hippocampus. The corresponding symptoms include 
forgetfulness and confusion (2). As the disease progresses, 
the patient’s visual acuity diminishes, and in combination 
with serious memory decline, the patient becomes unable 
to distinguish faces or items (3). This places a heavy burden 
on patients and society. Thus, improvements in early AD 
diagnosis, followed by prompt treatment, is critical (4). 

In recent years, with rapid advancements in computer 
and neuroimaging technology, doctors have employed 
computer and medical images to achieve the early diagnosis 
of AD. The analysis of AD has become a mainstream 
trend (5). The current technical difficulties in relation to 
the analysis of AD primarily include extracting effective 
classification features from medical images, establishing 
good robustness, and designing and constructing a simple 
structure for the classification model (6). 

Magnetic resonance imaging (MRI) is a non-invasive 
research method that measures blood oxygen level-
dependent signals in the brain (7). It can accurately 
determine the amount of patient brain oxygen activity at a 
given time, and it is widely used in AD diagnostic research 
(8,9). Thus, it is of the utmost importance to develop 
objective AD bio-indicators that aid in neuroimaging 
evaluations for the determination of AD clinical diagnosis 
and treatment outcomes (10,11). 

Nowadays, clinical decision solutions can be interpreted 
in two different ways by comparing previous knowledge 
contained in data sets. One is a quick or intuitive approach 
that uses basic clinical pattern recognition, often used in 
medical emergencies. But these all have a higher probability 
of being wrong and providing an incomplete view. The 
other approach is the slow or rational approach. It is 
deductive and deliberate, requiring more intelligence, 
time and cost information. But they make more accurate 
decisions. Because all of these decisions are based on 
data collected, analyzed, and stored in complex and 

heterogeneous forms, it is important to use an algorithmic 
approach to minimize the computing power required. 
Machine learning applications are currently making a 
significant contribution to the global healthcare sector to 
improve its quality, and will continue to do so (12).

To date, researchers have developed multiple computer-
aided systems to establish a precise disease diagnosis (13). 
Between the 1970s and 1990s, scientists designed a rule-
based expert framework, and post 1990s, they designed 
supervised models. To train supervised models, features 
are generally extracted from task-based images; however, 
such models require human specialists, as well as ample 
effort, time, and funding (14). This presents an enormous 
challenge for the continuation of this mode of disease 
diagnosis (15,16). With the emergence of deep-learning 
(DL) models, it is feasible to retrieve features directly from 
imaging data without human intervention. The relative 
ease of this approach is compelling more research into DL 
models to enable the precise diagnosis of various diseases 
(17,18). Compared to the challenges of other image 
analysis programs [e.g., computed tomography (CT), MRI, 
X-rays, ultrasounds, and sentiment analysis], DL models 
have achieved considerable success (16,19). Notably, they 
have been reported to produce reliable results in terms of 
disease diagnosis and stratification, especially in the lungs, 
abdomen, brain, cardiovascular, and retina. However, it 
is still an enormous challenge for scientists to detect AD 
using DL models. This is likely due to reduced acquisition 
and errors in preprocessed medical images, as well as the 
problematic recognition of the cerebral regions of interest 
(ROI), disproportional data-set class participants, data-set 
inaccessibility, and reduced differences between varying 
classes in different phases of AD (20). To make matters 
worse, symptoms that are distinct to AD (e.g., hippocampal 
shrinkage) are also sometimes evident in the healthy aging 
brain. Further, relative to natural images, medical images 
are often complex (7,21,22). 

To address this problem, this study sought to develop 
fully automatic CNN models for the multi- or binary- 
classification of the brain. Using random forest (RF) (23), 
we demonstrated that data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) can be used to stratify 
subjects as being either cognitively normal or having 
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dementia (24,25). In this report, we begin with a description 
of the ADNI data, and then discuss the specific protocols 
and results employed in the stratification. Next, we examine 
the statistical information corresponding to the classifiers, 
report the multiple metrics employed for the stratification 
assessment, employ the ADNI data set to stratify subjects’ 
disease status using MRI images as predictors, and finally, 
analyze the results across all classifiers (26,27). We also 
report the results of a simulation examination of the model’s 
performance using higher resolution images, and finally, 
we explain the implications of our results, outline future 
research directions, and address the limitations of our 
current investigation. We present the following article in 
accordance with the STARD reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-2961/rc).

Methods

ADNI details

Data from the ADNI database (adni.loni.usc.edu) were 
analyzed in this study. ADNI was established in 2003 by 

Michael W. Weiner, MD, as a public-private partnership 
(28,29). We used 3 cross-sectional data sets from the ADNI 
to conduct our binary-stratification [AD or normal controls 
(NC), or AD and mild cognitive impairment (MCI)] or 
multi-stratification (AD, MCI, and NC) process using 
MRI. Overall, we examined 200 subjects, among whom 43 
(21.5%) were diagnosed with AD, 97 (48.5%) with MCI, 
and 60 (30%) as NC (Figure 1). The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Implementation setup

This section describes the implementation procedure of 
bio-indicator detection from brain MRI images using deep 
CNNs and iterated RF. The procedures were executed on 
Intel(R) Core (TM) i7-7500U, with NVIDIA Tesla V100 
32G, and Window 10. Our designed CNNs were trained 
on brain MRI images, and they predicted and classified 
brain images as either normal or abnormal. Graphics 
processing units (GPUs) are known to significantly enhance 
the training procedure of various models. Intensive 
computation, matrix multiplication, and other operations 

A
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Figure 1 Example image of each modality and anatomical location. (A) AD, (B) MCI, and (C) NC. The original images are obtained from 

the ADNI’s database (https://ida.loni.usc.edu/login.jsp?project=ADNI). AD, Alzheimer’s disease; MCI, mild cognitive impairment; 
NC, normal controls.

https://ida.loni.usc.edu/login.jsp?project=ADNI
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were included in the training models, such as image 
stratification. We employed GPUs with machine-learning 
(ML) frameworks to train our model in this study. We 
employed several libraries, including Keras, TensorFlow, 
NumPy, and SciPy, to construct our CNNs. Next, we 
used an iterated RF to retrieve more specific and relevant 
characteristics. We also used Python 3.6 to construct certain 
graphs. The data set we used was composed of T2-weighted 
MRI brain images in the axial plane, with 512×512 plane 
resolution. We downloaded the data set from https://adni.
loni.usc.edu/. In total, we arbitrarily selected 1,937 images, 
among which, 621 were AD, 445 were MCI, and 871 were 
NC. Our study flowchart is provided in Figure 2.

Model evaluation

The K-fold cross validation separated participants into 
k independent sets and fitted the model k times. At each 
model fitting, a separate set was used as the test set. The 

mean prediction error across all the sets provided an 
estimate prediction for the expected estimation error, and 
parameter values that reduced the estimate of expected 
estimation error were employed to fit the classifier/model 
using all the available data. As most of the data sets had 
very small sample sizes, they could not be used as separate 
test sets, and as the k-fold cross validation provided an 
estimation of the expected estimation error, it enabled us to 
assess model performance while using all the available data 
to construct the model.

Statistical analysis

To avoid deception, the classifiers must be evaluated in 
relation to multiple metrics. A considerable challenge 
in this study was the precision with which a classifier or 
the probability with which an algorithm could accurately 
stratify a subject. However, this metric can be misleading, 
particularly, in conditions in which the sample sizes are 

Figure 2 Workflow chart. AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal controls; MRI, magnetic resonance 
imaging; CNN, convolutional neural network.

Evaluate validation accuracy
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Figure 3 Layered architecture of CNN. CNN, convolutional neural network. 

unbalanced. Thus, along with precision, it is critical to 
predict and consider multiple other metrics while assessing 
stratification performance (i.e., accuracy, recall, and 
specificity). Preferably, all metrics must be near 1 if the 
classifier is performing satisfactorily. Additionally, it may 
be of benefit to assess stratification performance using 
measures that assess all 4-confusion matrices [i.e., true 
positives (TPs), false positives (FPs), true negatives (TNs), 
and false negatives (FNs)]. The Matthew’s correlation 
coefficient (MCC) has advantages over precision value and 
the F1 score; the form of the metrics used is as follows in 
Equations 1 and 2:

( ) ( ) ( ) ( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
⋅ − ⋅

=
+ ⋅ + ⋅ + ⋅ +  [1]

21
2

TPF
TP FP FN

⋅
=

⋅ + +
 [2]

All the aforementioned metrics must be predicted in a 
cross-validation process, as our major concern in predicting 
metrics values is applying the classifier to independent data.

CNN architecture

CNNs belong to a group of deep neural networks that use 
convolutional layers (CLs) to filter inputs, and computer 
neuronal output that is related to certain regions within 
the input (30). In this way, a CNN is able to extract both 
spatial and temporal characteristics from an image (28). A 
weight-sharing method is generally employed in CNN-
based CLs to minimize the total quantity of parameters. 
CNNs are composed of the following 3 building blocks: 
(I) a CL that examines the spatial and temporal profiles; 

(II) a subsampling (max-pooling) layer that minimizes or 
down-samples the dimensionality of an image; (III) a fully 
connected layer that classifies the input image into different 
categories. The CNN architecture is shown in Figure 3.

We generated our model using CNNs. We modified the 
original CNN architecture to enable it to read an image 
512-by-512-by-1 in size, with 512 as the pixel image size, and 
1 as the grayscale image. The collected information was then 
arbitrarily separated into the training set (TS) and validation 
set (VS); 80% of the images were used for the TS, and 20% 
were used for the VS. The algorithm was trained with the 
TS, and the hyperparameters were tuned with the VS. After 
several attempts, we made the following modifications: the 
CNNs were made to possess 5 sets of CLs, with subsequent 
batch normalization, ReLU, and maximum-pooling layers. 
The 5 CLs had a filter size of 8-by-8l; however, we slowly 
increased the filter quantity such that we had 16 filters in 
the 1st CL, 16 in the 2nd CL, 32 in the 3rd CL, 48 in the 
4th CL, and 64 in the 5th CL. We also included 1 default 
padding and 1 stride in each CL. The entire connected layer 
was then adjusted to either binary or 3 as we attempted to 
classify either the binary or 3 categories. Subsequently, we 
used the TS to predict the labels of the VS and computed 
the prediction precision (i.e., the fraction of labels that was 
predicted accurately). The network employed stochastic 
gradient descent with momentum, and had an initial 
learning rate of 0.01. After multiple attempts to obtain an 
optimal result, the quantity of epochs was set to a maximum 
of 16. To further evaluate the prediction precision of the 
TS, we generated a test set with the binary or 3 categories of 
images. Each category contained 30 images that were new 
and unseen to the algorithm. We computed the prediction 
precision of these unseen data using the same procedure as 
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Figure 4 The results of the proposed model’s AUC values during the training and testing stages (A) AD vs. MCI, and (B) AD vs. NC. AUC, 
area under the curve of receiver operating characteristic curve; AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal 
controls.

that used for the VS.

RF

Using different ML classifiers [i.e., support vector 
machine (SVM), k-nearest neighbor (k-NN), and RF], we 
assessed each deep characteristic retrieved from the pre-
trained CNNs. RF, which was introduced by Breiman, 
is an ensemble learning algorithm that generates several 
decision trees using the bagging technique to stratify novel 
data instance (a deep characteristic of a brain MRI image) 
to a category target with 3 categories (i.e., AD, MCI, 
and NC) for 2 MRI data sets. We used the RF algorithm 
to stratify our input images. We used the Gini index to 
determine the gain in class “purity” in 1,000 CART trees. 
We then iteratively repeated these steps until no further 
improvements could be made. Our arbitrary selection of 
characteristics reduced the association among different 
trees and lowered the ensemble error rates. We next fed 
this observation into all RF stratification trees to predict 
a category target of new incoming data instance. The 
RF records the estimation quantity for each category 
and chooses the category with the most votes as the 
category label for the new data instance. In our study, the 
characteristic quantity was adjusted to the square root of the 
total characteristic quantities to achieve the optimal split. 
Additionally, we adjusted the quantity of trees from 1 to 150 
and chose the 1 with the best precision.

Further, we removed the RF usage to train characteristics 
with a value of 0, and instead used the reserved characteristics 

for the training. Next, we repeated the same method 
until the characteristic quantity with a critical value of 
0 was <1,000. Subsequently, the characteristics with a 
critical value <1.00e-7 were removed, and the reserved 
characteristics were employed for training purposes. The 
same method was repeated again until the characteristic 
quantity with a critical value <1.00e-7 was <1,000. Next, the 
characteristics with a critical value <1.00e-6 were removed, 
and the reserved characteristics were employed for training 
purposes. The same method was repeated again until the 
characteristic quantity with a critical value <1.00e-6 was 
<1,000. Finally, the iteration was continued until the final 
10 most critical characteristics were retrieved.

Results

We trained our model and repeated each run 3 times. The 
duration of the training and testing was approximately 
25–30 minutes. In terms of AD vs. MCI, the mean training 
area under the curve of receiver operating characteristic 
curve (AUC) of the 3 runs were 85.1%. We next employed 
our trained network to predict unseen images from our TS. 
Following 3 runs, the model obtained a mean precision rate 
of 87.9% (Figure 4A). In terms of AD vs. NC, the mean 
training AUC of the 3 runs was 90.6%. We next employed 
our trained network to predict unseen images from our TS. 
Following 3 runs, the model obtained a mean precision rate 
of 92.3% (Figure 4B).

In terms of AD vs. MCI, relative to the CNNs, the 
CNNs + SVM, CNNs + k-NNs, and CNNs + RF, the 
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Table 1 Simulation study: average classification performance between AD and MCI

Models
AD vs. MCI

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 score (%) MCC (%)

CNN 88.9 87.2 89.1 87.1 58.2 57.5

CNN + SVM 89.1 89.1 88.1 89.1 58.2 58.6

CNN + k-NN 89.2 88.2 87.2 89.1 58.1 57.5

CNN + RF 88.1 89.2 89.1 88.1 58.1 56.1

CNN + iterated RF 92.1 92.2 92.4 92.4 62.5 61.5

AD, Alzheimer’s disease; MCI, mild cognitive impairment; CNN, convolutional neural network; SVM, support vector machine; k-NN, 
k-nearest neighbor; RF, random forest; MCC, Matthew’s correlation coefficient. 

Table 2 Simulation study: average classification performance between AD and NC

Models
AD vs. NC

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 score (%) MCC (%)

CNN 88.9 87.2 89.2 88.3 59.4 59.2

CNN + SVM 88.1 89.1 88.1 89.2 59.3 58.1

CNN + k-NN 89.2 89.3 89.1 89.2 59.4 59.1

CNN + RF 89.1 89.2 89.3 89.1 59.4 59.1

CNN + iterated RF 94.6 93.7 94.3 93.2 63.8 61.9

AD, Alzheimer’s disease; NC, normal controls; CNN, convolutional neural network; SVM, support vector machine; k-NN, k-nearest 
neighbor; RF, random forest; MCC, Matthew’s correlation coefficient.

CNNs + iterated RF scores for precision, recall, and 
specificity for each category in the TS were all near 92%, 
while the F1 and MCC scores of both sets were 62.5% 
and 61.5%, respectively (Table 1). In terms of AD vs. NC, 
relative to the CNNs, the CNNs + SVM, CNN + k-NNs, 
and CNN + RF, the iterated RF scores for precision, 
recall, and specificity for each category in the TS were all 
93–94%, while the F1 and MCC scores of both sets were 
63.8% and 61.9%, respectively (Table 2). In terms of the 3 
stratifications of AD, MCI, and NC, relative to the CNN, 
the CNN, CNN + SVM, CNN + k-NNs and CNN + RF, 
the iterated RF scores for precision, recall, and specificity 
for each category in the TS were all near 89%, while the 
F1 and MCC scores of both sets were 59.9% and 59.5%, 
respectively (Table 3).

Discussion

Based on our analyses, we found that volumetric models 
hold great potential in disease stratification, which 
can aid in determining symptomatic AD diagnosis and 

possible patient outcomes. DL is an innovative method of 
discriminative image characteristic extraction (31). The 
CNN is a frequently employed DL in numerous image 
analyses and computer vision-based tasks. DL automatically 
studies visual characteristics from input pixel images via a 
mechanism of deep-layer receptive field combination and 
pooling. It is reported to have exceptional performance 
relative to other traditional ML programs.

MRI is a medical imaging diagnostic program that is 
safe, non-invasive, non-persistent, and pain-free (32,33). 
Unlike CT and other imaging, MRI is not associated with 
radiation (34); rather, it uses a uniform magnetic field and 
radio-frequency to display the internal system of the human 
body. Additionally, 2- and 3-dimensional MRI images are 
usually of high-quality, particularly, in terms of resolution 
and contrast (35). These digital formats provide enormous 
medical information regarding internal diseases and soft 
tissue differentiation that can be used for further analyses 
and stratification. Further, MRI yields detailed information 
on soft tissue abnormalities that may not be detected by CT 
or X-ray radiography (36).

file:///E:/3-%e6%9c%9f%e5%88%8a%e8%bf%9e%e7%89%88/APM/APM-V9N5-2020/APM-V9N5-2020/javascript:;
file:///E:/3-%e6%9c%9f%e5%88%8a%e8%bf%9e%e7%89%88/APM/APM-V9N5-2020/APM-V9N5-2020/javascript:;
file:///E:/3-%e6%9c%9f%e5%88%8a%e8%bf%9e%e7%89%88/APM/APM-V9N5-2020/APM-V9N5-2020/javascript:;
file:///E:/3-%e6%9c%9f%e5%88%8a%e8%bf%9e%e7%89%88/APM/APM-V9N5-2020/APM-V9N5-2020/javascript:;
file:///E:/3-%e6%9c%9f%e5%88%8a%e8%bf%9e%e7%89%88/APM/APM-V9N5-2020/APM-V9N5-2020/javascript:;
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Table 3 Simulation study: average classification performance between AD, MCI and NC

Models
AD vs. MCI vs. NC

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 score (%) MCC (%)

CNN 88.6 87.2 88.1 87.9 58.1 58.0

CNN + SVM 87.7 88.2 87.9 87.9 59.9 59.6

CNN + k-NN 88.4 88.3 88.4 88.1 58.2 58.1

CNN + RF 89.1 89.0 89.2 89.1 59.7 59.1

CNN + iterated RF 89.2 89.1 89.3 89.2 59.9 59.5

AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal controls; CNN, convolutional neural network; SVM, support vector 
machine; k-NN, k-nearest neighbor; RF, random forest; MCC, Matthew’s correlation coefficient. 

MRI and ML have greatly benefitted the identification 
of AD bio-indicators (17,37,38). In most abnormal brain 
imaging investigations, brain images are classified as either 
normal or abnormal (39). Upon disease detection, the next 
steps are typically location identification and personalized 
treatment design. Previous studies have identified multiple 
stratification characteristics of AD (3,40). These include the 
amplitude of low frequency fluctuations or hippocampal 
association with reduced frequency components, regional 
homogeneity, functional association with ROI strength, in 
terms of the automated anatomical labeling (AAL) atlas, 
whole-brain or selected regional functional correlation 
connectivity matrices, covariance connectivity matrices, 
and graph-theoretical measures. For example, to assist 
AD diagnosis and support the monitoring of disease 
progression, Dai et al. introduced a methodological 
framework, called the multi-modal imaging and multi-level 
characteristics with multi-classifiers (M3), to distinguish 
AD patients from healthy controls (41). Tripoliti et al. 
established a 6-stage procedure based on the characteristics 
obtained from functional MRI (fMRI) data to stratify AD 
patients (42). Armananzas et al. and Harper et al. introduced 
the direct usage of brain fMRI activation voxels to address 
the automatic pattern analysis of AD and healthy individuals 
by applying various ML methods to fMRI data stratification 
(8,43). However, the ROI-based technique has certain 
limitations. First, the ROIs examined are usually pre-
determined based on previous knowledge and are thus not 
data-driven or exploratory. Second, early detection accuracy 
is usually based on an examiner’s previous experience. 
Third, this technique has low efficiency. Fourth, it is 
difficult to manage mutual data among voxels.

In this study, we introduced a deep CNN and iterated 
RF architecture for the stratification of brain images using 

both their anatomical location and image modality. We 
employed JPEG images and obtained remarkable overall 
stratification precision in both the TS and VS (>89%). We 
also obtained markedly elevated F1 and MCC scores (>59%) 
in each category (of AD, MCI, and NC). Our findings 
validated the use of deep CNNs and iterated RF in medical 
image stratification. Our proposed method could potentially 
decrease the image processing time and save storage 
space in real-life scenarios. We recommend additional 
investigations be conducted on other anatomical locations, 
using other imaging modalities to achieve a fully automated 
medical image stratification system that can be employed in 
both clinical and research settings.
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